부산시내 하천수, 하수처리장 방류수의 비이온계면활성제에 관한 연구

최유정[†] · 장은화 · 김민경 · 임효상 · 이경심

수질보전과

Research on Nonionic Surfactant of River Water and Sewage Treatment Water in Busan

You-Jeong Choi[†], Eun-Hwa Jang, Min-Kyung Kim, Hyo-Sang Lim and Kyung-Sim Lee Water Conservation Division

Abstract

The object of this research was to find the properties of anionic surfactant and nonionic surfactant from the river water and sewage treatment water. Surfactant research was conducted at twenty samples of seventeen rivers and eight sewage water treatment plants in Busan. In case of river water, the concentration of nonionic surfactant ranged from 0.009 to 3.675 mg/L and that of anionic surfactant ranged from 0.000 to 3.677 mg/L. And nonionic surfactant concentration was higher than anionic surfactant concentration at nine samples of those rivers. On the other hand, the concentration of nonionic surfactant ranged from 0.176 to 1.693 mg/L and that of anionic surfactant ranged from 0.184 to 0.296 mg/L in case of sewage treatment water. The coefficient of correlation (R^2) of nonionic surfactant to COD and SS in sewage treatment water was higher than that of river water. As the result, we found that the nonionic surfactant possibly existed in river water and sewage treatment water. Hereafter it is needed to do more detailed and various research on the nonionic surfactant shortly.

Key Words: Nonionic surfactant, Anionic surfactant, River water, Sewage treatment water, Detergents

서 론

계면활성제는 1917년 독일의 BASF사에 의해 알킬나프탈린 술폰산이 처음 공업화된 이후로 주성분 또는 부성분으로서 세 제, 종이 펄프, 식품, 화장품, 안료, 도료, 고무, 플라스틱, 의 약품, 농약, 콘크리트 및 세라믹 등 산업 및 생활분양에서 폭 넓게 사용되고 있다. 또한 그 종류와 성능이 매우 다양하며, 가격이 비교적 저렴해 손쉽게 구입 사용할 수 있다.

이 같이 계면활성제의 사용분야는 다양하나 환경적 관점에 서 계면활성제에 대한 관심이 집중된 것은 가정용, 일반 사업 장내에서 세제로 사용되어지는 ABS (Alkybenzene sulfonate) 의 생분해성, 독성이 알려지기 시작하면서였다. 음이온계면활 성제의 대표적 산물인 ABS는 하천 등으로 유입됨으로 거품발 생으로 인한 산소공급의 차단, 하천의 부패, 악취발생 등의 수 질오염의 원인물질로 지목됨으로 이후 그 보다 생분해도가 높 은 LAS (Linear alkybenzene sulfonate)등으로 대체 생산 하게 되었다. 그러나 최근에 환경에 대한 인식이 고조되고 환 경규제 조치가 점차 확대됨에 따라 환경오염을 줄일 수 있는

Corresponding author. E-Mail: yjchoi@busan.go.kr Phone: 051-757-7504, Fax: 051-757-2879 환경 친화적인 제품개발에 더욱 많이 관심이 집중되고 보다 생 분해가 잘되는 비이온계면활성제 등에 대한 개발 노력이 커지 고 있다.

우리나라의 경우 처음 1996년 수질환경보전법에서 폐수배 출시설에 대한 음이온계면활성제의 배출허용기준을 설정하여 시행하였으며, 이후 하천기준에 음이온계면활성제에 대한 기 준을 적용하고 있다. 그러나, 최근에는 음이온계면활성제의 대 체품으로 비이온계면활성제의 사용량이 늘었지만 이에 대한 법적 규제 근거가 없어 무방비로 하수관을 통해 하수처리장으 로 유입되고 있는 실정이다.

비이온계면활성제는 호기성 상태에서만 생분해가 가능한 음 이온계면활성제(De Wolf and Feijtel, 1998; Kruegar et al., 1998)와 달리 혐·호기성 상태에서 모두 생분해가 양호할 뿐만 아니라(Marcomini and Pojana, 1997; Szymanski et al., 2000; Reznickova et al., 2002) 인간독성도 "약"이라 고 알려져 있지만(Naylor, 1995; Dorn et al., 1997; Mann and Bidwell, 2001; Singh et al., 2002) 미처리후 하수처리 장이나 폐수처리장으로 직접 유입되는 경우 거품발생으로 인

Method	Colorimetric determination	Compound
Cobalt thiocyanate test	blue	Polyoxyethylen alkylether
Hydroxamic acid test	violet, deepred	Fatty acid alkanol amide
Acrolein test	pink	Glycerine fatty acid monoester
Skatole test	blue ppt	Sorbitan fatty acid ester
Fehling test	orange	Sucrose fatty acid ester

Table 1. Chemical analysis of nonionic surfactants

Table 2. Classification of nonionic Surfactants

Compound	Structure
Polyoxyethylen alkylether(POEA)	RO-(CH2CH2O)n-H
Polyoxyethylen alkylphenylether(POEP)	$R-\overline{\bigcirc}-O-(CH2CH2O)n-H$
Polyoxyethylen polyoxypropylene glycol (POEPP)	HO– (CH2CH2O)a – (CH2CHO) b– (CH2CH2O) c–H
Polyoxyethylen fatty acid ester(POEP)	R-CO-O-(CH2CHO)n-H
Glycerine fatty acid monoester(MG)	CH2OCOR
	снон
	CH2OH
Polyoxyethylen sorbitan fatty acid ester(POES)	HO-(CH2CH2)a-O-CH-CH-O-(CH2CH2O)b-H
	H2C CH-CH-CH2OCOR V I O O(CH2CH2O)cH
Sorbitan fatty acid ester(SF)	HO-CH-CH-OH
	H2C CH-CH2OCOR
Fatty acid alkanol amide(FAA)	R-CO-NH-CH2CH2OH
	∠ CH2CH2OH
	R-CO-N CH2CH2

해 침전공정을 어렵게 만들거나 약품소요량을 증대시키도 하 며, 특히 강물에 유입되는 경우 어류독성이 크다는 연구결과가 있을 뿐만 아니라, 거품으로 인해 강물의 산소전달을 방해해 식물성 플랑크톤의 증식에도 악영향을 미칠 우려가 있어, 생태 계에 악영향을 미칠 잠재성을 가지고 있다¹⁹. 더군다나 전세계 적으로 그 사용량도 점차 증가하고 있어 최근 미국이나 유럽에 서는 수환경(하수처리장이나 하천)에 존재하는 비이온계면활 성제 정량화에 관한 모니터링^{21, 2, 21}) 및 환경위해성 평가 등 다 양한 연구가 진행되고 있다^{18, 20}.

이와 같이 비이온계면활성제에 대한 독성 실험들이 다양하 게 행해지고 있으며, 2006년에 우리원에는 세차장폐수내의 비이온계면활성제의 존재를 확인하는 연구결과를 발표하기도 하였다. 이 연구결과를 바탕으로 폐수 뿐 아니라 일반 생활하 수에서에서도 비이온계면활성제의 존재가능성이 높으리라 예 상되었다. 이에 부산시내 하천수 및 하수처리장 처리수에 대해 음이온계면활성제가 아닌 다른 종류의 계면활성제의 존재 유 무를 알아보고자 관련 실험을 실시하고 이에 따른 세제특성을 파악하여 수질환경기준 및 개선대책을 위한 기초자료로 활용 코자 본 연구를 실시하게 되었다.

연구배경 및 문헌고찰

계면활성제의 정의 및 종류

계면활성제란 한 분자 내에 한 분자내에 친수기와 소수기를 함께 갖는 양친매성 분자로서 계면에 선택적으로 배향 흡착하 여 계면의 성질을 변화시키는 것과 함께 매질 중에 배향한 분 자 집합체를 형성한다.

계면활성제는 거의 모든 산업 전반에 응용되는 사용되고 있 으며, 단일 system으로 사용되는 예가 적어 이들의 계통적 분 석은 쉽지 않은 일이다. 특히 기능성 추구 등으로 인해 사용성 이 증가하고 있는 비이온, 양쪽이온성 계면활성제에 대해서는 그 중요성이 고조되고 있다. 현재 분석기기의 발달로 계면활성 제 미량분석도 가능해지고 있으나 전처리 방법 등의 문제로 인 해 효율적인 분석은 이루어지지 많은 실정이다. 고기능, 저자 극, 환경친화적 등의 기능을 갖는 계면활성제가 요구되는 시점 에서 이들의 구조-특성 분석은 산업발달에 필수적인 요인이라 할 수 있다. 계면활성제는 가용성 정도에 따라(수용성, 비수용 성), 물에 해리 되었을때 나타나는 친수기의 이온에 따라(음이

Classification	Compound	Structure
Sulfate	Alk yl sufa te s	ROSO3-
	Alkylethersufates	R(OC2H4)nOSO3
	Sufa te da Ika no lami de s	RCONHC2HOSO3
	Monoglyceride sulfates	RCOOCH2CHOCH2OSO3
Sulfona te d hydroca bon	Alkylbenzene sulfonates	RC6H4SO3-
	Alkane sulfonates	RSO3
	Alpha—ole fin sul fonates	RCH=CHRSO3_
Sulfonated esters	Acyl isethiionates	ROOC2H4SO3
	Fatty ester α -sulfonates	RCOOR I SO3
	Nonoa lky Isul fos ucci nates	ROOCCHSO_ CH2COO_
Sul fona te d'a mides	Acyl methyltaurates	RCON(CH3)C2H4SO_
	Soaps	RCOO_
	Alkyl ethoxy carboxylate	R(OC2H4)nOCH2COO
	Acy Isa rcosina te s	$RCON(CH3)CH2COO_{-}$
	Alkyphosphates	$RO \cdot PO \cdot (OH)2$
		(RO)2POOH
		(RO)3PO

Table 3. Classification of Anionic Surfactants

온성, 양이온성, 양쪽성, 비이온성), 소수기에 따라(탄화수소 계, 실리콘계, 불소계, 하이브리드계 등), 분자량에 따라(단분 자, 저분자, 올리고머, 폴리머), 자연성에 따라(합성, 반합성, 천연성, 바이오계), 기능성에 따라(화학분해성, 생분해성, 킬 레이트 형성성, 항균성, 산화환원반응성, 전도성) 등 여러 가 지 방법으로 분류되고 있다.

이중 가장 일반적인 분류는 물에 해리 될 때 나타나는 친수기 에 따라 구분하는 음이온성, 양이온성, 양쪽성, 비이온성과 같이 분류되며, 이 중에서도 Linear alkylbenzene sulphonats (LAS), alkyl ethoxy sulphates (AES), alkyl sulphates (AS), alkylphend ethoxylates (APE), alkyl ethoxylates (AE), quaternary ammonium compounds (QAC)등이 상업 적으로 가장 많이 사용되고 있는 계면활성제이다.

비이온계면활성제

비이온계면활성제는 주로 세정, 휴화, 침투, 기포의 목적으 로 화장품, 의료용, 주거용 세제 등의 가정용제품 및 공업용제 품에 이르기까지 광범위하게 이용되며 현재 음이온계면활성제 다음으로 그 사용량이 많은 중요한 계면활성제이다. 통상 비이 온계면활성제의 친유기은 다른 계면활성제와 같은 식으로 분 포하는데 더욱이 비이온계면활성제는 친수기에도 분포하여 예 를 들면 ethyleneoxide (EO) 부가형에는 알킬기 분포와는 다 른 EO 부가몰 분포가 더해져 비이온계면활성제는 더 복잡한 화합물이라 할 수 있다. 그러므로 비이온계면활성제를 분석할 때에는 정성, 정량법은 물론 조성 분석법도 매우 중요하며 특 히 크로마토그래피를 중심으로 분리분석 기술이 잘 이용된다. 비이온계면활성제는 친수기에 따라 EO부가형과 비EO부가형 으로 분류하기도 하며 친수기와 친유기의 결합형식에 따라 ether, ester, amide형으로 분류 가능하다.

비이온계면활성제는 Polyoxyethylen alkylether (POEA), Polyoxyethylen alkylphenylether (POEP), Polyoxyethylen polyoxypropylene glycol (POEPP), Polyoxyethylen fatty acid ester (POEP) 등이 알려져 있다. 실험방법 및 대표적인 종류, 구조식은 Table 1, 2에 표기하였다.

음이온계면활성제

음이온활성제는 주로 세정을 목적으로 한 제품에 세정제 기 제 또는 세정 보조제로 사용된다. 음이온계면활성제를 Table 3에 표시하였다. 크게 분류하면 알킬황산에스테르염, 폴리옥 시에틸렌알킬황산에스케르염, 알킬술폰산, 비누루, 아실글로 타민산염 등의 아실화 아미노산, 인산에스테르염으로 나눌 수 있다. Linear alkybenzene sulphonats (LAS)는 합성 음이 온 계면활성제로 가장 많이 사용되며, 1998년을 기준으로 30 년동안 전세계적으로 소비한 양만 해도 연평균 2.8백만톤에 이 른다(Verge et al., 2000). 상업용 LAS는 알킬기의 탄소원자 수에 따라 다양한 동족체가 존재하며, 알킬기에 페놀기를 첨가 하는 경우 각각의 동족체에 대해 5~7개의 이성질체를 만들어 활용하고 있다.

Compound	Structure
Alkylamine salt	R−NHx · Ac x : 0−2 : acid
	stearylamine acetic acid
Quaternary annonium salt	[R1-N (CH3)3] · X
	stearyl trimethyamm oniumchl oride
	stearyl de methylbenzylammoniumchloride
	cetylpyridinuimamines
The others	poly cxya lky la mines

Table 4. Classification of cationic Surfactants

Table 5. Acute toxicity to aquatic creature from surfactants

	24~961	nr LC50 (mg/L)
chemical	fish	invertebrate
LAS (Linear alkylbenzene sulphonats)	1~10	1~1000
AS (Alkyl Sulphates)	5~20	2~200
AOS (Alpha Olefin Sulfonates)	1~15	2~?
SAS (Secondary Alkane Sulfonates)	1~50	9~300
AES (Alkyl Ethoxy Sulphates)	1~10	5~20
AE (Alkyl Ethoxylates)	1~6	1~100
APE (Alkylphenol Ethxylates)	4~12	1~100

(AOCS, World Conference on Olecchemicals into the 21st century, 1990)

양이온계면활성제

양이온 계면활성제는 수용액 중에서 해리하여 친수기가 양 이온으로 되는 것으로 그 이온성에 의해 응용범위도 다양하다. 예를 들면 섬유유연제, 안료의 분산, 에멀젼바인더 등 공업적 으로 이용되고 있다. 그 외 모발의 유연한 마무리제 및 대전방 지를 위한 린스제, 피부의 세정 및 decdarant 등으로 살균제 로 응용되기도 하고 분체 등의 개질제로 이용되기도 한다. 현 재 양이온계면활성제 분석에 결정적인 방법은 없고 다양한 방 법을 결합시킬 필요가 있다. 양이온 계면활성제를 분류하면 1) 알킬아민염 2) 제4급 암모늄염 3) 기타로 크게 분류된다. Table 4에 그 분류와 대표 예를 나타내었다.

계면활성제의 독성

합성세제가 비누대신 사용되면서부터 합성세제로 인한 수질 오염이 심각한 문제로 대두 되었다. 이러한 세제오염의 대체방 안으로 세계적으로 1960년대부터 1970년 초기까지 경성 ABS 를 생분해성이 높은 LAS로 전환하였다. 하지만 LAS가 분해될 때 생기는 페놀계 물질은 생물에 대한 독성이 높아 우리나라에 서도 1996년 1월 1일 이후 수질환경보전법으로 음이온계면활 성제를 규제하기 시작했다.

세제의 무린화와 물의 경도에 영향을 잘 받지 않고도 거품을 잘 이는 장점 때문에 유산 에스테르염의 사용량은 최근 비약적 으로 증가되어, 부엌용의 60%가 LAS에서 Alcohol ether sulphates (AES)로 변하고 있다. 하지만 AES가 인체에 대한 독성분류는 '약'으로 알려져 있는 반면 LAS에 비해 생분해성 은 좋지 않을 뿐만 아니라^a, 합성과정에서 발생하는 부산물로 서 지오키산이라는 발암물질이 샴푸등에 혼입될 위험이 있다.

따라서 종래 세제로 많이 쓰이던 음이온계면활성제는 컴팩트 세제의 출현과 효소 계 세제의 개발로 가장 많은 점유율을 가지 고 있었으나, 최근에는 이를 대체할 비이온계의 수요가 크게 증 가 하고 있다.

Alkylphenol ethoxylates (APE)는 상대적으로 안정된 생 분해가 되는 특성 때문에 비이온계면활성제의 상당부분을 차지 하고 있다. 하지만 APE나 Nonyl phenol ethoxylates (NPE)는 세제로 사용된 후 하수처리장으로 유입되어 활성슬러 지 등에 흡착된 후 혐기성 상태에서 분해산물인 Non yl phend(NP)을 발생시키는데 이는 하천이나 호수로 유입되어 수생동·식물에 호르몬 교란 작용을 한다는 보고가 있다. 한편 영국에서는 하수처리장 주변의 물고기 기형원인을 이 물질로 보고 1976년 이후 사용을 금지시키기도 하였다 (WattanabeRyouG et al., 1999). Alcohol ethoxylates (AE)는 인간독성이 적어 식품 및 의약품의 유화제로도 사용되 고 있으며, 세정제의 주원료로도 주로 사용하는 비이온계면활 성제로 전 세계적으로 생산량이 연간 1.1백만 톤에 이른다. (Hauthal, 2004) AE의 독성에 관한 연구는 A.D. Little (1997), Goyer et al. (1981), Talmadge (1994)와 van de Plassche et al. (1999) 등에 계속 진행중이며, 케나다와 미국 에서는 이미 APE와 더불어 AE의 환경위험성에 대한 연구결과 를 근거로 하여 규제를 할 분위기가 조성되고 있다. (Environment Canada, Health Canada, 2000; Servos,

	8	. r		
처리장명	준공	용량	처리구역	처리방법
수영하수처리장1	1988.4.	286	동래구, 연제구 전역구, 금정구, 부산진구, 해운대구, 수영구 일부	표준활성슬러지법
수영하수처리 장2	1998.3.	264	동래구, 연제구 전역구, 금정구, 부산진구, 해운대구, 수영구 일부	표준활성슬러지법
강변하수처리장1	1990.11.	330	사하구, 사상구, 북구 전역, 서구 일부	표준활성슬러지법
강변하수처리 장2	2001.10.	285	사하구, 사상구, 북구 전역, 서구 일부	응집순활변법
남부하수처리 장	1996.6.	340	남구전역, 부산진구, 수영구, 동구 일부	표준활성슬러지법
해운대하수처리장	1996.9.	65	해운대구 좌동, 중동 일부	표준활성슬러 지법
녹산하수처리 장	2001.8.	160	명지주거단지, 녹산공단	활성슬러지변법
신호하수처리장	2001.8.	24	신호공단	순산소포기법
서부하수처리 장	2003.4.	15	강동동, 대저동 일부	SBR공법
중앙하수처리 장	2006.1.	120	중구, 서구 전역, 동구 일부	BIOFOR(고정막생물막)
영도하수처리 장	2006. 1.	95	영도구	KSBNR공법

Table 6. List of sewage treatment plant in Busan

1999 ; US Environmental Protection Agency, 2003) 독일 에서도 이미 APE의 내분비 변이 독성에 관한 연구뿐만 아니라 AES, AE, LAS의 내분비 변이 가능성에 관한 다양한 연구가 진행중이다(Knepper et al., 2003; Routledge and Sumpter, 1996).

한편, 양이온계면활성제는 음이온계면활성제와 유사한 정도 의 자극을 보이나 세포독성은 더 크다는 보고가 있다 (Singh et al., 2002). 하지만 주로 가정에서 사용하는 섬유유연제의 원료로 사용하고 있다. Table 2-5는 대표적 계면활성제에 대 한 다양한 수생생물의 독성에 대한 연구결과이다. 부산시 하수처리장 시설의 현황

현재 부산시내 하수도 시설의 대부분은 우수, 도시생활오수, 공장폐수가 동일관로로 배수되는 이른바 합류식관거로 과거 도 시화되기 전 주로 강우시에 우수를 처리하기 위하여 설치된 것 으로서 되시화된 이후 시설의 미비 및 통수능력 부족 등으로 오 염 및 재해가 야기되고 있어 과거 초기단계 시설을 꾸준히 개선 확장해 왔으나 각종 오폐수로 인하여 하천 및 연안해역의 오염 도가 날로 심화되고 있는 추세에 있다. 2005년말 현재 부산시 의 하수처리장은 수영, 강변, 남부 해운대 녹산 등 9개의 처리 장이 가동 중에 있으며, 현재 하루평균 하수처리량은 1,253천 ㎡이고, 9개 하수처리장의 총 처리용량은 일 최대 1,984천㎡이

구분	하천명	채취지점
	온천천 (Oncheon)	태광산업앞
	수영강1(Suyoung1)	동천교
	수영강 2(Suyoung2)	원동교
	춘천 (Chuncheon)	동백교
	우동천 (Udong)	우동교
주거지역	동천 (Dongcheon)	범 4호교
(Residential area)	전포천 (Junpo)	제일제당 옆
	학장천 (Hakjang)	엄궁교
	덕천천 (Duk cheon)	덕천교
	대천천 (Dae che on)	화명교
	금천천 (Ke uncheon)	식만교
	삼락천 1(Samrak1)	삼락교
	삼락천 2(Samrak2)	산업교
공업지역	감전천 1(Kamjeon1)	엄궁교
(Industrial area)	감전천 2(Kamjeon2)	배수장
	장림천 (Janglim)	장림교
	서낙동강 (Se onakdong)	김해교
농업지역	조만강 (Joman)	조만교
(Aricultural area)	신어천 (Sineo)	시만교
	평강천 (Pyeongkang)	울만교

Table 7. Sampling site of river in Busan

Table 8. Sampling site of Sewage treatment plants

Table 6. Sampling site of 5	ewage treatment plants			
처리장명	위치	준공	용량	처리방법
수영하수처리장1	수영구 연산동	1988. 4.	286	표준활성슬러지법
수영하수처리 장2	수영구 연산동	1998. 3.	264	표준활성슬러지법
강변하수처리장1	사하구 장림동	1990.11.	330	표준활성슬러지법
강변하수처리 장2	사하구 장림동	2001.10.	285	응집순활변법
남부하수처리 장	남구 용호동	1996.6.	340	표준활성슬러지법
해운대하수처리장	해운대구 좌동	1996. 9.	65	표준활성슬러지법
서부하수처리장	강서구 강동동	2003. 4.	15	SBR공법
중앙하수처리 장	서구 암남동	2006. 1.	120	BIOFOR(고정막생물막)

며, 하수도보급률은 89.0%로 전국에 비해 다소 저조한 실정이 다(2006환경백서, 부산광역시).

계면활성제는 주성분 또는 부성분으로서 세제, 종이 펄프, 식 품, 화장품, 안료, 도료, 고무, 플라스틱, 의약품, 농약, 콘크리 트 및 세라믹 등 광범위 하게 사용되고 있다. 특히 가정에서 주 방세제, 샴푸, 린스 등의 사용이 많으며 이들은 미처리되어 하 천이나 하수도로 방류되고 있다. 처리시설이 갖추어진 하수처 리장의 경우도 음이온계면활성제에 대해서만 초점이 맞춰지고 있어 미처리된 비이온계면활성제의 배출이 우려된다.

재료 및 방법

연구대상

하천수의 경우 부산시내 17개 하천 20지점을 2007년 11~ 12월에 걸쳐 시료를 채취하였다. 주거지역 11지점, 공업지역 5 지점, 농업지역 4지점으로 분류하여 Table 7에 나타내었다. 하수처리장은 부산시내 소재 8개소에 대해 유입수 및 방류수 를 채수하였으며 Table 8에 상세히 기술하였다.

시험방법

음이온계면활성제 및 기타항목 분석

음이온계면활성제, COD, SS의 분석방법은 수질오염공정시 험법¹⁰에 따라 실험하였다. 이 중 COD는 수질오염공정시험법 내 제1법인 과망간산칼륨용액을 이용한 산성법으로 실험하였 고 음이온계면활성제는 공정시험법에 제시된 메틸렌블루 흡광 광도법을 채택하였다.

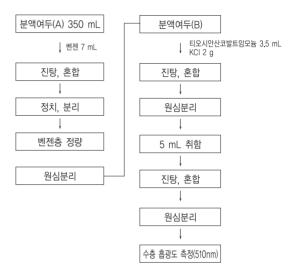


Fig. 1. procedure of analysis for AE7

비이온성계면활성제

비이온계면활성제는 분액여두(A)에 시료 일정량을 취하고 물 을 넣어 약 350 mL로 한 다음 톨루엔 7 mL를 넣어 진탕시킨 후 톨루엔층 전량을 원심분리관에 취해 원심분리 시킨다. 분리 된 톨루엔 일정량을 분액여두(B)에 옮기고 여기에 티오시안산 코발트(I)산암모늄 용액 3.5 mL와 KCI 2 g을 넣고 진탕시킨 후 전량을 원심분리관에 취해 원심분리 시킨다. 이후 톨루엔층 5 mL를 취해 비색관에 옮기고 PAR용액 4 mL를 넣고 진탕한 후 원심분리하여 수층의 붉은색 착화물을 510 nm에서 흡광도 를 측정하여 정량화하였다. 간략한 실험절차는 Fig 1과 같다.

Table 9. List of Analytical instruments

Instruments	Model NO.	Analytical conditions
UV-Visible Spectrophotometer	CARY 3(Varian)	510 nm, 620 nm
Sha ke r	SR-2W(Taitec)	_
Centrifuge	HA-1000-3(Ha ni l)	2,000 rpm

Table 10. Properties of standard reagents

Sample Name	Name	Moculral Formula	Avg. MW
SDS	Sodium dodecy1 sulfate	CH3(CH2)11 OSO3Na	288
AE7	Hepta oxyethylen dodecyl ether	$C_{12}H_{25}O(C_2H_4O)_7H$	494

사용장비

실험에 사용된 장비는 Table 9와 같다.

시약

음이온계면활성제, 비이온계면활성제 농도 분석에 사용되는 전 시약은 특급시약(GR급)을 사용하였다. 표준물질은 음이온 계면활성제는 Sodium DodecylSulfonate(이하 SDS로 칭함) 와 비이온계면활성제는 세정제, 유화제 등으로 주로 많이 사용 되고 있는 폴리옥시에틸렌도데실에테르계열인 Heptaoxyethylen Dodecylether(이하 AE7로 칭함)을 사용하였으며 구조식 등 특성은 Table 10과 같다. 음이온계면활성제 농도 분석에 사용 되는 용액인 알칼리성붕산나트륨용액, 메틸렌블루용액, 황산 (1+35)용액은 수질오염공정시험법에 따라 제조하였다.

비이온계면활성제 농도 분석에 필요한 티오시안산코발트산 (I)암모늄 용액은 티오시안산암모늄(NH4SCN) 456 g을 3차 증류수로 용해시켜 1L 만들고, 질산코발트 6수화물 (Co(NO₃)2·6H2O) 46.6 g을 3차 증류수로 용해 시켜 1L 만들 어 1:1로 혼합하였다.

PAR용액은 4-(2-Pyridylazo)-resorcinol (CnH9N3O2) 0.1 g을 3차 증류수로 용해시켜 1L 만들고, 여기에 소량의 수 산화나트륨용액(4W/V%)을 넣어 pH가 11정도가 되도록 만들 었으며, 실험시에는 이 용액을 10배 희석하여 즉시 제조하여 사용하였다.

결과 및 고찰

하천내 계면활성제의 농도 분석 및 비교

시내 하천수 내에 대한 세제특성을 알아보기 위하여 비이온 계면활성제, 음이온계면활성제, 화학적산소요구량과 부유물질 의 농도를 분석하였다. 화학적산소요구량은 음이온·비이온계 면활성제의 농도로 측정되는 물질이 화학적산소요구량과 연관 성이 있는지를 검토하기 위함이었고, 부유물질의 농도를 분석 하여 절대적이지는 않지만 콜로이드 입자의 정도를 추측할수 있어, 물에 해리될 때 이온성을 띄지 않아 음전하를 띈 콜로이 드에 흡착이 잘되는 비이온계면활성제의 농도와 양의 상관관 계를 가지는지를 확인코자 하였다.

계면활성제 농도 분석 결과

Table 11~13 및 Fig. 2~3은 부산시 하천수 20개 지점에 대해 음이온계면활성제, 비이온계면활성제를 분석한 결과이며 각각 주거, 공업, 농업지역으로 나누어 결과를 나타내었다.

하천 전체를 대상으로 음이온계면활성제의 농도 범위는 0.00~3.677 mg/L, 비이온계면활성제의 농도 범위는 0.009 ~3.675 mg/L였다. 이 중 하천 환경기준(사람의 건강보호기 준)인 0.5 mg/L을 초과한 지점은 우동천, 학장천, 덕천천 등 총 8개 지점이었다. Lewis (1991)에 의해 fathead minnow를 대상으로 독성실험을 한 결과 AE (n=12~13)에 대해 NOEC (No Observed Effect Concentration) 값이 0.32 mg/L 이 었고, WOCS(World Conference on Oleochemicals into the 21st century, 1990)에 의하면 일반적인 AE의 수생생물

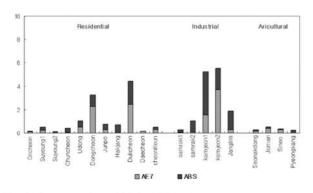


Fig. 2. Concentration of SDS, AE7 in river

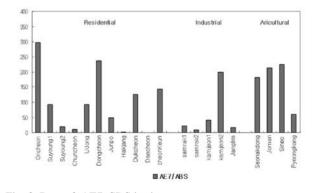


Fig. 3. Rate of AE7, SDS in river

river name		AE7	ABS	AE7/ABS	AE7+ABS
Max		2.450	1.958	297.5	4.408
Min		0.009	0.000	1.3	0.095
Mea	in	0.575	0.510	106.8	1.085
	Oncheon	0.119	0.040	297.5	0.159
	Suy oung 1	0.231	0.250	92.4	0.481
	Suy oung 2	0.015	0.080	18.9	0.095
	Chuncheon	0.040	0.360	11.1	0.400
D: -1 # - 1	Udong	0.501	0.540*	92.8	1.041
Residential	Dongcheon	2.268	0.962*	235.8	3.230
areas	Junpo	0.251	0.511*	49.1	0.762
	Hakjang	0.009	0.713*	1.3	0.721
	Dukcheon	2.450	1.958*	125.1	4.408
	Dae cheon	0.154	0.000	_	0.154
	Keuncheon	0.286	0.199	143.7	0.485

Table 11. Surfactants Concentration in river (Residential areas)

* Sampling site which exceeds the stabdards of water environment(0.5 mg/L)

Table 12. Surfactants Concentration in river (Industrial areas)

river r	name	AE7	ABS	AE7/ABS	AE7+ABS
Ma	Max		3.677	199.4	5.518
Mi	Min		0.216	8.7	0.265
Mea	an	1.121	1.667	57.7	2.788
	sa mrak 1	0.049	0.216	22.7	0.000
	sa mrak 2	0.085	0.981	8.7	0.265
Industria l	kamje on1	1.541	3.677*	41.9	1.066
areas	kamje on2	3.675	1.843*	199.4	5.218
	Janglim	0.257	1.616*	15.9	5.518

* Sampling site which exceeds the stabdards of water environment(0.5 mg/L)

Table 13. Surfactants Concentration in river (Aricultural areas)

river	name	AE7	ABS	AE7/ABS	AE7+ABS
Ma	ax	0.370	0.174	224.8	0.545
М	in	0.088	0.088	60.7	0.233
Me	an	0.216	0.129	169.7	0.345
	Seonak dong	0.159	0.088	181.8	1.873
Aric ul tural	Joman	0.370	0.174	212.6	0.000
areas	Sineo	0.245	0.109	224.8	0.247
	Pyeongkang	0.088	0.145	60.7	0.545

에 대한 24~96 hr LC50이 1~6 mg/L인 것을 감안한다면 AE 최고농도 3.675 mg/L은 다소 우려할 만한 수준이었다.

또한, 음이온 및 비이온성계면활성제의 합계값(AE7+SDS) 은 0.00~5.518 mg/L의 범위로 나타났으며, 이 중 5 mg/L 이상이 2개소로 감전천2, 장림천 지점으로 모두 공업지역에 위 치한 하천으로 나타났다. 음이온계면활성제에 대한 비이온계 면활성제의 비(AE7/SDS)는 0~296.8였으며, 20개의 지점중 9개 지점이 음이온계면활성제 농도보다 비이온계면활성제의 농도가 높게 나타났다.

Table 13 ~15에서 하천수에 대한 비이온, 음이온계면활성제 의 결과를 용도별로 나누어 비교한 결과 주거, 공업, 농업지역별 각각 비이온계면활성제의 평균 농도는 0.575, 1.121, 0.216 mg/L로 음이온계면활성제의 평균 농도는 0.510, 1.667, 0.129 mg/L로 나타나 두 항목 모두 공업지역내 하천의 농도가 더 높 게 나타났다. 공업지역에 위치한 하천이 일반항목 등 COD, SS 외에도 세제성분 역시 높게 나타남을 알 수 있었다.

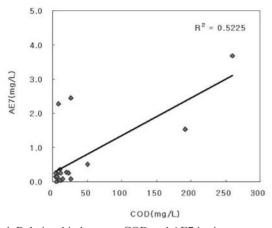


Fig. 4. Relationship between COD and AE7 in river

Fig. 5. Relationship between SS and AE7 in river

비이온계면활성제와 COD, SS의 상관관계

Table 14에서 보면 화학적산소요구량이(COD)나 부유물질 (SS)이 높은 시료는 대체로 비이온계면활성제의 농도 역시 높 은 것으로 나타났다. 이 결과를 바탕으로 화학적산소요구량과 부유물질이 계면활성제를 주원료로 하는 세정제에 의한 영향 을 받았는지 확인할 필요가 있었다.

Fig. 4에서와 같이 시료의 COD농도와 비이온계면활성제 농 도의 상관계수(R²)는 0.5225로 비교적 높은 수치를 보였다. 이 는 작년에 폐수를 대상으로 한 상관계수 0.6327보다 다소 낮 았으나 비이온계면활성제 농도에 따른 COD농도의 기여 여부 를 충분히 짐작 할 수 있었다. 음전하를 띈 콜로이드가 핵으로 작용하여 비이온계면활성제의 흡착을 돕기 때문에 하수처리장 에서 SS의 제거율이 높은 경우 비이온계면활성제의 제거율도 높다는 연구결과를 참고로 하여 SS가 높은 경우 비이온계면활 성제도 높을 개연성이 있다는 가정하에 비이온계면활성제 농 도와 SS의 농도를 비교해보았다. Fig. 5를 보면 상관성(R²)이 0.2156로 다소 낮게 나타났다. 하지만 SS에 부착을 잘 하는 비 이온계면활성제의 특성을 이용한 하수처리장의 경우는 다른 결과가 나올 수 있으며 이에 대해서는 다음 장에 논의하였다.

river name	AE7(mg/L)	COD(mg/L)	SS(mg/L)
Onc he on	0.119	6.8	8.9
Suy oung 1	0.231	6.0	25.7
Suy oung 2	0.015	7.6	3.3
Chuncheon	0.040	12.4	28.3
Udong	0.501	50.9	45.0
Dongcheon	2.268	8.8	17.8
Junpo	0.251	12.0	23.7
Hakjang	0.009	5.6	4.5
Dukcheon	2.450	26.0	37.8
Daecheon	0.154	4.6	1.7
CheonKeun	0.286	20.1	18.4
Samra k1	0.049	10.0	41.3
Samra k2	0.085	26.6	60.6
Kamjeon1	1.541	191.8	240.0
Kamjeon2	3.675	259.7	104.7
Janglim	0.257	23.0	32.8
Seonak dong	0.159	6.8	10.4
Joman	0.370	10.2	23.3
Sineo	0.245	4.4	9.5
Pyeongkang	0.088	14.3	15.6

Table 14. Chemiclal measurement of river

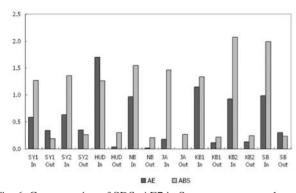


Fig. 6. Concentration of SDS, AE7 in Sewage treatment plants

하수처리장내 계면활성제의 농도 분석 및 비교 계면활성제 농도 분석 결과

시내 하수처리장내의 유입수와 배출수에 대한 세제특성을 알아보기 위하여 비이온계면활성제, 음이온계면활성제, 화학 적산소요구량과 부유물질의 농도를 분석하였다.

Table 15 및 Fig. 6은 부산시내 소재하는 하수처리장 8개소에 대한 음이온계면활성제, 비이온계면활성제를 분석한 결과이다. 음이온계면활성제의 농도 범위는 유입수는 1.259~2.072 mg/L, 방류수는 0.184~0.296 mg/L로 전 업소들이 비슷한 수치를 보였으며, 유입수는 하천 환경기준(사람의 건강보호기 준)인 0.5 mg/L을 모두 초과하였으나 방류수는 모두 기준 이 내로 나타났다. 비이온계면활성제의 농도 범위는 유입수는 0.176~1.693 mg/L, 방류수는 0.000~0.349 mg/L로 음이 온계면활성제보다 다소 낮게 나타났으며, 농도 경향은 다소 편 차가 있는 것으로 나타났다. 또한, 음이온 및 비이온성계면활 성제의 합계값(AE7+SDS)은 0.221~3.000 mg/L의 범위로 나타났으며, 이 중 5 mg/L 이상인 곳은 한 곳도 없었다.

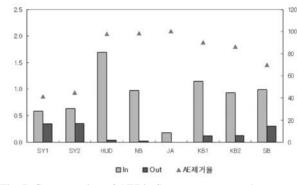


Fig. 7. Concentration of AE7 in Sewage treatment plants

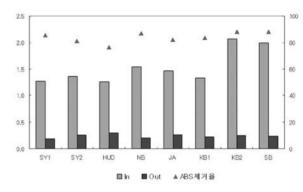


Fig. 8. Concentration of SDS in Sewage treatment plants

Fig 7~8에는 음이온 및 비이온계면활성제에 대한 유입수. 방류수의 제거율을 나타내었다. 비이온계면활성제의 경우 수 영하수처리장 1.2를 제외하고 제거율은 60% 이상으로 높게 나 타났다. 수영하수처리장의 경우 유입, 방류 농도가 별로 차이 가 나지 않아 제거율이 낮게 나타났으나 방류수 비이온성계면

	AE7	ABS	AE7/ABS	AE7+ABS	AE7 removal rate	ABS removal rate
SY1 In	0.585	1.270	46.0	1.855	41 F	0F F
SY1 Out	0.342	0.184	186.5	0.526	41.5	85.5
SY2 In	0.630	1.357	46.4	1.988	11 C	Q1 ()
SY2 Out	0.349	0.258	135.2	0.607	44.6	81.0
HUD In	1.693	1.259	134.5	2.952	97.9	76.5
HUD Out	0.035	0.296	11.9	0.332	97.9	70.0
NB In	0.966	1.543	62.6	2.508	98.3	86.8
NB Out	0.017	0.204	8.3	0.221	90.0	00.0
JA In	0.176	1.459	12.0	1.634	100.0	91.0
JA Out	0.000	0.264	0.0	0.264	100.0	81.9
KB1 In	1.146	1.328	86.3	2.474	000	83.4
KB1 Out	0.117	0.220	53.0	0.337	89.8	03.4
KB2 In	0.928	2.072	44.8	3.000	06.0	00.1
KB2 Out	0.127	0.246	51.6	0.373	86.3	88.1
SB In	0.986	1.986	49.7	2.972	(0.0	00 0
SB Out	0.297	0.239	124.4	0.536	69.9	88.0

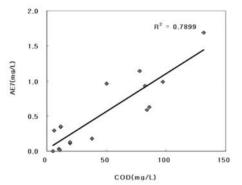


Fig. 9. Relationship between COD and AE7 in Sewage treatment plants

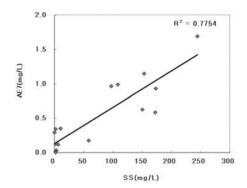


Fig. 10. Relationship between SS and AE7 in Sewage treatment plants

Table 15. Surfactants Concentration in Sewage treatment plants

Name	AE7(mg/L)	COD(mg/L)	SS(mg/L)
SY1 In	0.585	84.0	172.9
SY1 Out	0.342	12.0	1.7
SY2 In	0.630	86.0	150.0
SY2 Out	0.349	12.0	10.8
HUD In	1.693	131.4	244.3
HUD Out	0.035	10.2	3.0
NB In	0.966	50.0	97.5
NB Out	0.017	10.6	2.1
JA In	0.176	38.0	59.0
JA Out	0.000	5.0	2.2
KB1 In	1.146	78.0	154.0
KB1 Out	0.117	19.2	6.2
KB2 In	0.928	82.5	174.0
KB2 Out	0.127	19.2	2.5
SB In	0.986	97.1	108.2
SB Out	0.297	6.2	0.4

활성제의 농도 자체가 낮은 값을 보여 큰 문제는 되지 않은 것 으로 사료된다. 음이온계면활성제의 경우 전 업소 제거율이 75%이상으로 높게 나타났으며 방류수 농도 역시 0.5 mg/L보 다 낮아 매우 양호한 결과를 보였다.

비이온계면활성제와 COD, SS의 상관관계

하수처리장에서의 비이온성계면활성제의 COD, SS와의 상 관관계를 Fig. 9~10에 나타내었다. Fig. 9에서 하수처리장에 대한 비이온계면활성제와 COD농도의 상관계수(R²)는 0.7899 로 높은 수치를 보였다. 이는 하천수 0.5225, 폐수 0.6327의 상관계수보다 더 높은 수치로 하수처리장의 경우 하천수나 폐 수보다 훨씬 이론적 수치에 가깝게 나왔다.

하수처리장에서의 비이온계면활성제 농도와 SS농도의 상관 계수를 Fig 10.에 나타낸 결과 상관계수 0.7754로 매우 높은 수치를 보였다. 이는 하천수 0.5225, 폐수 0.6327의 상관계수 보다 더 높은 수치로 음전하를 띈 콜로이드가 핵으로 작용하여 비이온계면활성제의 흡착을 돕기 때문에 하수처리장에서 SS 의 제거율이 높은 경우 비이온계면활성제의 제거율도 높다는 연구결과와 비슷한 경향을 나타냄을 알 수 있었다. 하지만 SS 에 부착을 잘 하는 비이온계면활성제의 특성을 이용한 하수처 리장이나 폐수처리장에서의 비이온계면활성제 처리에 대해서 는 좀더 많은 실험이 필요하다 사료되었다.

결 론

부산시내 하천수, 하수처리장 유입수 및 방류수를 중심으로 비이온계면활성제 및 음이온계면활성제의 농도를 알아 보고 이에 따른 세제특성을 파악하여 수질환경기준 및 개선대책을 위한 기초자료로 활용코자 본 연구를 실시하였으며 그 결과는 다음과 같다. 1. 부산시내 하천수 17개하천 20개 지점에 대한 비이온계면 활성제 연구 결과, 농도 범위는 0.009~3.675 mg/L였다. 음 이온계면활성제에 대한 비이온계면활성제의 비는 0~296.8였 으며, 20개의 지점 중 9개 지점이 음이온계면활성제 농도보다 비이온계면활성제의 농도가 높았다.

2. 하천수에 대한 음이온계면활성제 연구 결과, 농도 범위는 0.00~3.677 mg/L, 하천 환경기준(사람의 건강보호기준)인 0.5 mg/L을 초과한 지점은 우동천 등 8개 지점이었다.

3. 하천수에 대한 비이온, 음이온계면활성제의 결과를 용도 별로 나누어 비교한 결과 주거, 공업, 농업지역별 각각 비이온 계면활성제의 평균 농도는 0.575, 1.121, 0.216 mg/L로 음이 온계면활성제의 평균 농도는 0.510, 1.667, 0.129 mg/L로 나 타나 공업지역내 하천의 농도가 더 높게 나타났다.

4. 부산시내 하수처리장 8개업소에 대한 음이온계면활성제 연구결과, 농도 범위는 유입수는 1.259~2.072 mg/L, 방류수 는 0.184~0.296 mg/L였으며, 전 업소가 유입수는하천 환경 기준(사람의 건강보호기준)인 0.5 mg/L을 모두 초과하였으나 방류수는 기준 이내였다. 비이온계면활성제의 농도 범위는 유 입수는 0.176~1.693 mg/L, 방류수는 0.000~0.349 mg/L 였다.

5. 하수처리장에서 비이온계면활성제에 대한 유입수, 방류 수의 제거율은 수영하수처리장1,2를 제외하고 제거율은 60% 이상으로 높게 나타났다. 그리고 음이온계면활성제에 대한 유 입수, 방류수의 제거율은 역시 모든 지점이 제거율이 75%이상 으로 높았다.

6. 비이온성계면활성제와 COD, SS의 농도의 상관계수(R2) 는 하천수의 경우 0.5225, 0.2156이었고, 하수처리장의 경우 0.7899, 0.7754로 하수처리장이 더 높은 상관성을 보였다.

본 연구결과 하천수 및 하수처리장 처리수 내 하천 환경기준 (사람의 건강보호기준)으로 정해져 있는 음이온계면활성제 외 에 다른 형태의 계면활성제인 비이온계면활성제의 존재를 확 인 할 수 있었으며, 현재 국내에서는 환경기준으로 음이온계면 활성제만 규정되어 있어 비이온계면활성제에 대한 대책마련이 요구된다. 또한, 향후 비이온계면활성제를 규제 할 수 있는 법 적 근거를 뒷받침할 환경독성 및 기타 자연환경내 거동에 관한 모니터링 등 다양한 연구가 필요할 것으로 사료된다.

참 고 문 헌

- 1. 환경부. 환경부 고시 제2006-188호: 수질오염공정시험 방법, pp256-257(2006)
- 2. 환경부. 환경백서, pp573-627(2006)
- 3. 부산광역시, 2006환경백서, pp142-149
- 한국계면활성제·접착제공업협동조합.계면활성제청정 생산현황(2002)

- 5. 국가청정생산지원센터. 국내 정밀화학산업의 현황, pp26-63(2003)
- Japaneses Standards Association. Japaneses Industrial Standards, pp482-484(2005)
- 7. 홍사욱, 합성세제의 일반지식, 한국수질보전학회지, 제15 권, 제2호, pp1-14(1989)
- 8. 장은화, 세차장폐수의 비이온계면활성제 존재 및 규제 필 요성 연구, 부산대(2006)
- 9. 통계청. 품목별 생산 · 출하 · 재고 · 내수 · 수출량.
 1995.01 ~ 2007.01
- 이찬영외1인, 통계방법에 의한 하수처리장 운전분석, 한 국환경위생학회지, 제28권 제3호, pp34-38(2002)
- 11. 김덕희외 2인, 해설 계면활성제, Analytical Science & Technology, vol. 13, No 2(2000)
- 12. 김순래외 3인, 음이온계면활성제의 분해능에 관한 연 구, 환경물학회지, pp153~159(1999)
- 13. 臟原正美외 2인, 계면활성제의 개발역사와 전망, 공업 화학, 제6권 제1호, pp32-49(2003)
- 14. Lutz Nitschke and Lothar Huber, Analysis of ethoxylated alcohol surfactants in water by HPLC, Fresenius' Journal of Analytical Chemistry, 345, pp585-588(1993)
- 15. R.E. Taljaard, J.F. van Staden. Simultaneous determination of cobalt(I) and Ni(I) in water and soil samples with sequential injection analysis. Analytica Acta, 366, pp177-186(1998)
- 16. Yasuhiro Umebayashi, Mari Shin, Ryo Kanzaki, Shin-ichi Ishiguro. Thermodynamics of [Co(NCS)4]²⁻ at Poly (ethylene Oxide) and Octylphenyl Moieties in Micelles of Nonionic Surfactants. Journal of Colloid and Interface Science, 237, pp167-173(2001)
- 17. Guang-Guo Ying. Fate, behavior and effects of surfactants and their degradation products in the environment. Environment International, 32, pp417-431(2006)
- 18. S.W. Morrall, J.C. Dunphy, M.L. Cano, A. Evans, D.C. McAvoy, B.P. Price, W.S. Eckhoff. Removal and environmental exposure of alcohol ethoxylates in US sewage treatment. Ecoloxicology and Environmental Safety, 64, pp3-13(2006)
- Foreword. Special issue on the environmental risk assessment of alcohol ethoxylate nonionic surfactant. Ecotoxicology and Environmental Safety, 64, pp1-2(2006)
- 20. S.E. Belanger, P.B. Dorn, R. Toy, G. Boeihe, S.J. Marshall, T. Wind, R. Van Compernolle, D.

Zeller. Ecotoxicology and Environmental Safety, 64, pp85-99(2006)

- 21. T. Wind, R.J. Stephenson, C.V. Eadsforth, A. Sherren, R. Toy. Determination of the fate of alcohol ethoxylate homologues in a laboratory continuous activated-sludge until study. Ecotoxicology and Environmental Safety, 64, pp42-60(2006)
- 22. C.V. Eadsforth, A.J. Sherren, M.A. Selby, R. Toy, W.S. Eckhoff, D.C. McAvoy, E. Matthijs. Monitoring of environmental fingerprints of alcohol ethoxylates in Europe and Canada. Ecotoxicology and Environmental Safety, 64, pp14-29(2006)
- 23. R. van Compernolle, D.C. McQvoy, A. Sherren,

T. Wind, M.L. Cano, S.E. Belanger, P.B. Dorn, K.M. Kerr. Predicting the sorption of fatty alcohols and alcohol ethoxylates to effluent and receiving water solids. Ecotoxicology and Environmental Safety, 64, pp61-74(2006)

- 24. C.J. Sparham, I.D. Bromilow, J.R. Dean. SPE/LE/ESI/MS with phthalic anhydride derivatisation for the determination of alcohol etyoxylate sufactants in sewage influent and effluent samples. Journal of Chromatography A, 1062, pp39-47(2005)
- 25. Ioannis Xiarchos, Danae Doulia. Effect of nonionic surfactants on the solubilization of alachlor. Jouinal of Hazardous Materials, 2, pp5327-5333(2006)