PCR을 이용한 야생조류 유래 병원성대장균 (EHEC, ETEC) 검출에 관한 연구

이강록[†] · 이우원 · 이승미 · 이동수

축산물위생검사소

Detection of Virulence Gene of *Escherichia coli* (EHEC, ETEC) Isolated from Wildlife Birds by Multiplex Polymerase Chain Reaction

Gang-Rok Lee[†] Woo-Won Lee Seung-Mi Lee and Dong-Soo Lee

Veterinary Service Laboratory

Abstract

The prevalence of Enterohemorrhagic *E. coli* (EHEC) and Enterotoxigenic *E. coli* (ETEC) in wildlife birds was investigated by multiplex polymerase chain reaction (PCR) technique.

A total of 377 *E. coli* strains isolated from 1,700 feces of wildlife birds were analyzed. PCR assay using virulence specific primers was established to differentiate virulence *E. coli* from non virulence *E. coli*. EHEC strain was recovered from 1 sample and ETEC was not detected. One EHEC strain was resistant to kanamycin.

Key Words: Enterohemorrhagic E. coli (EHEC), Enterotoxigenic E. coli (ETEC), wildlife birds, kanamycin

서 론

대장균은 동물의 장내에 서식하는 정상세균총으로 대부분 비병원성으로 알려져 있으나 그 중 일부는 병원성을 가지는 것 으로 알려져 있다.

병원성 대장균은 발병기전에 따라 장출혈성대장균 (Enterohemorrhagic *E. coli*, EHEC), 장독소원성대장균 (Enterotoxigenic *E. coli*, ETEC), 장관침입성대장균 (Enteroinvasive *E. coli*, EIEC), 장관병원성대장균 (Enteropathogenic *E. coli*, EPEC) 및 장관흡착성대장균 (Enteroaggregative *E. coli*, EAggEC)등으로 구분되어지 고 있다¹⁾.

이중 EHEC는 Shiga-like toxin을 생산하여 점막에 손상 을 입힘으로써 발병하며 주요중상으로는 단순설사, 출혈성장 염, 용혈성 요독증후군(Hemolytic Uremic Syndrome, HUS)을 나타내며, 주된 혈청형이 O157:H7이지만, O26과 O111도 이 독소를 생산하는 혈청형으로 알려져 있다. ETEC 는 사람에서는 소아설사, 동물에서는 돼지의 대장균성하리, 송 아지의 백리증 등을 일으키며 가축에서는 많은 경제적 손실을 일으키는 것으로 알려져 있다. ETEC는 콜레라 독소와 유사한 이열성장독소(LT)와 내열성장독소(ST)를 생산하며 장점막에 부착하여 장독소를 생산함으로써 설사를 일으킨다⁹.

EHEC와 ETEC의 진단을 위하여 많은 방법들이 개발되어 있으나 많은 시간이 소요되고 진단에도 한계가 있는 실정이다 ^{1,3}. 따라서 최근에는 특정 primer를 이용한 polymerase chain reaction(PCR) 방법이 개발되어 편리함과 정확성이 높을 뿐만 아니라 여러 primer를 동시에 사용하여 검사함으 로써 여러가지 병원성 인자를 동시에 검사할 수 있는 장점은 있으나, annealing 온도에 따라 반응이 일어나지 않거나 비특 이적 반응이 나타나는 등의 단점도 있어 실험실마다 적당한 반 응온도로 진단 방법을 구축하고 있는 실정이다⁴⁻⁷⁰.

또한 이들 병원성 대장균의 감염 예방및 치료를 위하여 많은 항생물질이 사용되고 있으며, 이로 인한 내성균 출현으로 치료 에 어려움이 많은 현실이다⁸⁾.

본 연구에서는 EHEC와 ETEC의 검출을 위한 multiplex PCR 방법 및 야생조류 유래 이들 병원성대장균의 분포상황 및 항생제 감수성검사를 실시하였기에 그 결과를 보고하는 바 이다.

재료 및 방법

균분리 동정

2005년 11월부터 2006년 2월까지 부산시 사하구 을숙도일 원에서 조류 분변 1,700점을 멸균면봉으로 채취하여 동량의 멸균 생리식염수에 부유한 후 MacConky Agar (Difco,USA) 에 도말하여 37℃ overnight 배양 후 붉은색 집락을 채취하 여 Edward 및 Ewing의 방법에 따라 IMViC 및 각종 생화학 적 성상검사로 대장균임을 확인하였다⁹.

Virulence factor	Primer sequences (5'-3')	Size of product(bp)
SLT	GAG CGA AAT AAT TTA TAT GTG TGA TGA TGG CAA TTC AGT AT	518
ST	CCC CTC TTT TAG TCA GTC CCA GCA CAG GCA GCA TTA CA	165
LT	CAG ACT ATC AGT CAG AGG TTG TTC ATA CTG ATT GCC GCA	417

Table 1. Primers used in multiplex PCR of ETEC and EHEC

Fig. 1. Agarose gel electrophoresis of the PCR products of *E. coli* reference virulence genes.(Lane M: Mark(100bp DNA ladder, 1: SLT, 2: ST, 3: LT, 4:*Salmonella typhimurium*, 5: multiplex PCR result)

Fig. 2. Agarose gel electrophoresis of the PCR products of *E. coli* virulence genes isolated from wild bird. (Lane M: Mark(100bp DNA ladder, 1: SLT, 2:*Salmonella typhymurium* 3: multiplex PCR result)

표준균주

ST, LT 생산 표준균주는 우리연구원에 보관중인 ATCC 35401을 사용하였으며, SLT 생산 균주는 우리검사소에서 돼지 로부터 분리하여 Denka Seiken (Japan)사의 VTEC-RPLA test kit를 사용하여 reverse passive latex agglutination 시험으로 독소 생산이 확인된 PSL6-4를, 대조균으로 우리검 사소에 보관중인 Salmonella typhimurium WSU2657을 사용하였다.

병원성 대장균에 대한 Primer 작성

장독소 생산 (ST, LT) 및 SLT 생산 대장균의 검출을 위한 특 이 primer는 Table 1과 같이 합성 (Bioneer사)하여 제작자의 지시에 따라 사용하였다.

Template DNA준비

표준균, 대조균 및 시험균의 배양은 tryptic soy agar에 도 말하여 37℃, overnight 배양한 집락 2-3개를 tryptic soy broth에 접종 37℃, overnight 배양한 균액 1 mL을 eppendorf tube에 넣고 5,000 rpm 으로 5분간 원심분리하여 상층액은 버리고 멸균 증류수 1 mL로 재부유하여 동일 조건으 로 원심분리한 후 멸균증류수 500 mL에 재부유한 다음 100℃ 15분간 끓인 것을 template DNA로 사용하였다.

병원성 대장균 검출을 위한 PCR시험

표준균주 및 분리 대장균으로부터 ST, LT, SLT 생산 유무를 검사하기위하여 각각의 primer를 사용한 PCR 및 3종의 primer를 혼합한 multiplex PCR을 실시하였다.

요약하면 template DNA 10 µL, primer 2 µL (forward,

reverse 각 1 µL), 10X PCR buffer 5 µL, dNTP 5 µL, taq DNA polymerase 1 µL를 혼합한 후 D.W로 50 µL되게 맞추 어 T-gradient thermal cycler (Biometra, Germany)를 이 용하여 DNA 증폭을 시도하였다. Multiplex PCR의 최적조건 을 찾기 위하여 반응 시간 및 온도는 최초 94℃ 5분간 denaturation한 후, 94℃ 1분간 denaturation, 56℃ 1분간 annealing, 72℃ 1분간 extention하는 과정을 30회 반복하였 으며, 마지막 extention은 72℃ 에서 10분간 실시하였다. 최종 증폭산물에 대하여 1.5% ethidium bromide agarose gel로 전기 영동하여 판독하였다.

항생제 감수성시험

분리된 병원성 대장균에 대한 항생제 감수성시험은 disc 시 험법 (BBL)으로 실시하였으며, 사용한 항생제는 Neomycin (N), Tetracycline (Te), Trimethoprim/sulfamethoxazole (sxt), Streptomycin (S), Kanamycin (K), Colistin (CL), Chloramphenicol (C), Ampicillin (A), Amikacin (AN), Cephalothin (CF), Amoxicillin (AM), Gentamicin (G) 등 12종을 사용하였다.

결 과

균 분리 동정

조류 분변 1,700점으로부터 분리된 대장균은 377주가 분리 되어 22.2%의 분리율을 나타내었으며, 아울러 Salmonella와 Listeria도 동시에 분리시도 하였으나 분리되지 않았다.

ST, LT, SLT DNA 검출을 위한 PCR 조건

표준균주를 사용하여 ST, LT 및 SLT DNA검출을 위하여 각각 및 multiplex PCR로 annealing 온도를 52℃ 부터 60℃ 까지 gradient로 최적의 검출 조건을 설정한 결과 56℃ 에서 가장 만족할 만한 결과를 얻었으며, 그 결과는 Fig. 1과 같다.

분리 대장균에서 toxin 검출

분리된 대장균 377주를 대상으로 ST, LT, SLT DNA검출 을 시도한 결과 1주에서 SLT가 검출되었다 (Fig. 2).

분리 병원성 대장균의 항생제 감수성검사 결과

분리된 병원성 대장균 1주에 대하여 항생제 감수성검사 결 과 K에만 중등도의 내성을 나타내었고, 나머지 약제에는 높은 감수성을 나타내었다.

고 찰

대장균은 동물의 장관에 존재하며 분변에 포함되어 정상으 로 배출되는 장내세균이지만 일부 대장균에서는 병원성을 가 진 것으로 알려져 있다. 이중 SLT, LT 및 SLT 생산 대장균은 병원성이 널리 알려져 있으며 많은 연구가 이루어져 있는 실정 이다. 그러나 이러한 연구는 주로 사람이나 가축을 중심으로 연구되어진 것으로 야생조류를 대상으로 시험을 실시한 것은 거의 없는 실정이다. 본 연구에서 야생조류를 대상으로 대장균 분리시험을 한 결과 22.2%로서 낮은 분리율을 나타내었으며, 다른 병원성 세균인 살모넬라나 리스테리아는 검출되지 않은 결과로 보아 야생조류의 분변에는 다양한 종류의 병원성세균 이 존재하지 않음을 알 수 있었으며 이와 같은 결과는 다른 선 인들의 보고가 거의 없는 실정이어서 이는 조류분변의 특징인 지 아니면 다른 요인에 의한 것인지 알 수가 없었으므로 앞으 로 더 많은 연구가 필요하리라 사료된다.

대장균 중 일부는 병원성 인자를 포함하고 있어 주로 어린 동물에 여러 가지 형태의 질병을 유발함으로써 양축농가에는 많은 경제적 손실을 일으키는 것으로 알려져 있다.이러한 병원 성인자를 빨리 검출하기 위한 많은 진단법 중 요즈음에는 직접 이들 병원성 인자를 찾아내는 PCR기법이 많이 사용되어지며 여러가지 특이 primer를 사용하여 multiplex PCR을 실시함 으로써 많은 노력과 시간을 절약할 수 있는 장점이 있다⁴⁵⁾. 그 러나 annealing 온도 등 여러 요인에 의하여 반응이 일어나지 않거나 비특이적인 반응을 제거할 수 없는 단점이 있어 실험실 실정에 맞는 방법을 개발함으로써 진단법을 개선할 수 있으리 라 사료된다.

본 연구에서도 반응온도를 여러가지로 조정하면서 실시한 결과 annealing 온도가 56℃에서 가장 좋은 반응을 나타내었 을 뿐만 아니라 비특이적 반응도 나타나지 않았으며 multiplex PCR로서도 충분히 검출 가능하였으므로 향후 이 조건으로 병원성 대장균증 진단에 적용하면 빠르고 정확한 진 단이 이루어져 양축농가에 도움을 줄 수 있으리라 사료된다.

한편 확립된 PCR조건으로 야생조류 유래 대장균 377주를 대상으로 병원성 유무를 조사한 결과 SLT생산 1주만 검출되 어 이는 송 등까의 도축돈 분변으로부터 SLT 분리율 3.9%보 다는 현저히 낮은 분리율을 보였으며, 장독소생산 대장균은 1 주도 분리되지 않아 함 등까의 설사자돈으로부터 분리한 대장 균의 48.4%가 장독소를 생산하였다는 보고와는 큰 차이를 보 였다. 이는 정상 야생조류의 분변내에는 병원성 대장균이 거의 존재하지 않음을 알 수 있었으나, SLT 1주가 분리되었다는 것 은 야생조류 분변내에도 병원성 대장균이 존재하며 이들이 먹 이를 찾아 축사로 날아든다면 가축으로 병원성 대장균의 전파 가능성이 있으리라 사료된다.

분리된 SLT 생산 대장균의 항생제 감수성 시험결과 K에만 내성이 나타남으로써 박 등》의 결과와는 많은 차이를 보이고 있으나 야생조류 유래 병원성 대장균도 비록 단제이지만 내성 인자를 보유하고 있음을 알 수 있었으며 이균이 가축으로 전파 된다면, 항생제에 노출이 없었다하더라도 이약제에 대한 내성 인자를 획득할 가능성이 있으리라 사료된다.

결 론

1. 2005년 11월부터 2006년 2월까지 부산광역시 사하구 을 숙도에서 철새 분변 1,700점을 수거하여 대장균을 분리한 결 과 377주가 분리되어 22.2%의 낮은 분리율을 나타내었다.

2. 분리된 대장균에 대하여 병원성을 조사하기 위하여 multiplexPCR의 조건을 확립한 결과 annealing 온도 56℃ 에서 좋은 결과를 얻었다.

3. 377주의 대장균중 EHEC 1주만 검출되었다.

4. EHEC 1주의 항생제 내성검사결과 kanamycin에만 내 성을 나타내었다.

참고 문 헌

- Chart. H. Toxigenic *Escherichia* coli. J Appl Microbiology Symposium Supplement. 84. 77S-86S(1998).
- Nataro, JP, Kaper, JB. Diarrheagenic Escherichia coli Clin Microbiology Rev. 11, 142–201(1998).
- 이상운, 정석찬, 박용호, 우희종. PCR에 의한 대장균의 이열성 장독소 유전자 검출. 대한미생물학회지. 31. 145-154(1996).
- 4. Franck. SM, Bosworth. BT, Moon. HW. Multiplex PCR for enterotoxigenic, attaching and effacing, and shiga toxin-producing *Escherichia coli* strains from calves. J Clin Microbiol. 36. 1795-

1797(1998).

- Pass. MA, Odedra. R, Batt. RM. Multiplex PCRs for identification of *Escherichia coli* virulence genes. J Clin Microbiol. 38, 2001–2004(2000).
- 6. Toma. C, Lu. Y, Higa. N, Nakasone. N, Chinen. I, Baschkier. A, Rivas. M, Iwanaga. M. Multiplex PCR assay for identification of human diarrheagenic *Escherichia coli*. J Clin Microbiol. 41. 2669-2671(2003).
- Vidal. R, Vidal. R, Lagos. R, Revine. M, Prado. V. Multiplex PCR for diagnosis of enteric infections associated with diarrheagenic *Escherichia coli*. J Clin Microbiolo. 42, 1787–1789(2004).
- 8. 박주연, 신나리, 박용호, 유한상. 설사 자돈으로부터 분리

한 *Escherichia coli*의 특성에 관한 연구; 항균제 감수 성, 장독소및 섬모의 유전형 분포및 plasmid profiles. 대한수의학회지, 40, 301-310(2000).

- 9. Edwards. PR, Ewing. WH. Identification of enterobacteriae. Burgess Publishing Co. Mineapolis, Min. USA.(1972).
- 10. 송영환, 김지영, 채미경, 박창식, 김명철, 전무형. 도축 돈 장 분변으로부터 Shiga Toxin-Producing *Escherichia coli*의 분리와 성상. 대한수의학회지. 44. 551-559(2004).
- 함희진, 천두성,채찬희. 포유자돈 소장에서 분리된 대장 균의 섬모항원과 장내독소 분포양상. 대한수의학회지. 37. 779-784(1997).