온천천·수영강 적조 조사

- 온천천·수영강 하류 구간 적조생물 모니터링 및 수환경 특성 파악
- 시민 및 하천 관리기관 적조 관련 정보 제공

1. 조사개요

○ 조사근거 : 자체계획(온천천 적조 조사 추진계획, 2021.01.28.)

○ 조사목적 : 적조 발생 동향 파악으로 수질 영향 파악 및 정보 제공

※ 동절기 온천천 하류 붉은색 수질에 대한 시민 및 관련 기관 문의 급증

○ 조사시기 : 월 1회 조사 (20,000 cells/mL¹) 이상 시 월 2회 조사)

○ 조사지점 : 총 7개 지점

- 온천천(연안교, 연산교, 안락교, 수영강합류부), 수영강(세월교, 원동교, 과정교)

그림 1. 적조 조사지점

2. 조사방법

- O 조사항목
 - 조류: 갈색편모조류, 규조류, 남조류, 녹조류
 - 수질 : 수온, pH, DO, 전기전도도, 염분, COD, T-N, T-P, DTN, DTP, NO₂-N, NO₃-N, NH₃-N, PO₄-P, 클로로필-a
 - 적조생물 색소 : Phycoerythrin
 - ※ 적조생물 및 수질 7지점 혼합시료 분석(대표성 확보 목적)

담당부서 : 물환경생태팀(☎051-309-2917) 팀장 : 이정규, 담당자 : 정선영

^{1) 20,000} cells/mL : 조류경보제(친수활동 구간) 관심단계 기준 적용

3. 조사결과

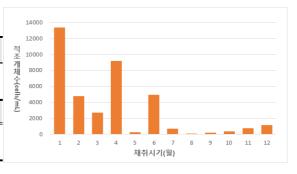
- O 수환경특성
 - 총질소(T-N), 총인(T-P) : 각각 연평균 4.209 mg/L, 0.212 mg/L
 - 적조 번성시기(1~4월) 각각 평균 5.115 mg/L, 0.227 mg/L
 - → 연평균 비교 시 큰 변화 없으며, 부영양화 지속
 - 풍수기(6~9월) 각각 평균 2.965 mg/L, 0.180 mg/L
 - → 집중 강수에 의한 희석 영향 (그림 3 참고)
 - 3월 T-N, 5.782 mg/L로 증가, 암모니아성 질소(NH₃-N) 3.194 mg/L
 - → 하수 유입에 의한 T-N, NH3-N 증가 추정
 - 생물화학적 산소요구량(BOD) : 연평균 4.0 mg/L
 - 적조 번성시기(1~4)월 평균 5.1 mg/L(하천 생활환경기준 약간 나쁨(IV) 등급, 적조생물은 미생물에 쉽게 분해되어 BOD에 큰 영향을 미칠 수 있음
 - 화학적 산소요구량(COD) : 연평균 5.8 mg/L
 - 적조 번성시기(1~4)월 평균 6.2 mg/L, 적조생물의 번성과 소멸이 유기물 농도에 영향을 미침

그림 2. 수질 항목 월별 변화

- 강수량 : 7~8월 강수량 집중 (그림 3 참고)
 - 갈수기(1~4월) 적조 밀도 상승, 풍수기(7~8월) 적조 발생 크게 둔화
 - → 평년 대비 풍수기 더 많은 강수로 적조생물 감소

- 온천천·수영강 수계 부영양상태
 - → 항상 조류 번성에 최적화된 영양상태 유지

그림 3. 2021년 부산 월별 강수량


그림 4. 월별 부영양화 지수

O 적조 현황

- 원인생물 : 갈색편모조류(Cryptomonads), 수계 내 번성과 소멸 반복
- 시기별 출현 현황 : 1~4월 적조 집중 번성(최대 13,303 cells/mL)
 - 7~10월까지 강수 영향 및 다른 조류군 번성 등의 요인으로 개체수 감소하였으나, 적조생물은 온천천·수영 강 하구에 항상 존재

표 1. 월별 적조생물 개체수

월	1	2	3	4	5	6
개체수 (cells/mL)	13,303	4,782	2,700	9,141	249	4,920
월	7	8	9	10	11	12
개체수 (cells/mL)	710	45	164	378	739	1,131

- * 관측 결과 약 2,000 cells/mL에서 육안상 옅은 붉은색 감지
 - 조류 분류군별 출현 현황 (표 3 참고)
 - 총 12회 조사 중 적조생물 6회(1~4월, 6월, 11월), 규조류 5회(5월, 7월, 9~10월, 12월), 남조류 1회(8월) 우점
 - '19~20년 출현 현황: 적조생물 6회, 규조류 5회, 남조류 1회 우점
 - ※ '19~20년 조류 분류군별 출현 현황과 유사
 - 적조 발생규모 : '19~20년 대비 감소
 - '19~20년 대비 조사지점 증가(3지점 → 7지점)에 따른 희석 감소
 - → 기수역 시·공간별 수질 변동 크므로 지속 연구 필요

²⁾ 국립환경과학원에서 개발한 지수로서 각 지표항목(COD, Chl-a, T-P)에 확률분포함수를 비교·적용하여 산정 종합 TSI_{KO} = 0.5TSI_{KO}(COD)+0.25TSI_{KO}(Chl-a)+0.25TSI_{KO}(T-P)

4 보건환경연구원보 제31권 / 2022년

표 2. 평균 적조생물 개체수(2019~2021)

연도 항목	2019년	2020년	2021년
개체수(cells/mL)	5,989	14,261	3,189

표 3. 온천천·수영강 하구 플랑크톤 출현 현황(cells/mL)(2019~2021)

월	적조생물 (Cryptomonads)		규조류			남조류			녹조류			
	2019	2020	2021	2019	2020	2021	2019	2020	2021	2019	2020	2021
1	30,533	1,565	13,303 (92.2%)	51	181	433 (3.0%)						18 (0.1%)
2	2,283	70,254	4,782 (95.3%)	77	515	198 (3.9%)						2 (0.0%)
3	531	22,893	2,700 (81.8%)	196	249	600 (18.2%)					3	
4	15,100	50,217	9,141 (94.7%)	85	214	473 (4.9%)					8	42 (0.4%)
5	6,200	6	249 (34.2%)	12	169	258 (35.4%)					29	222 (30.5%)
6	5,377	11,787	4,920 (88.6%)	21,167	43,192	519 (9.3%)			25 (0.5%)		50	90 (1.6%)
7	45	7,561	710 (22.2%)	7,352	13,482	1,848 (57.7%)			254 (7.9%)	28	1	392 (12.2%)
8	968	2	45 (2.1%)	1,887	346	149 (6.9%)			1,716 (79.0%)		199	261 (12.0%)
9	198	0	164 (6.8%)	434	42	1,960 (81.3%)	15,933	777			76	286 (11.9%)
10	271	321	378 (32.1%)	597	977	742 (63.1%)	58	172		17	187	56 (4.8%)
11	565	2,872	739 (55.6%)	791	436	552 (41.6%)	15	197			36	37 (2.8%)
12	9,793	3,653	1,131 (46.8%)	211	506	1,270 (52.5%)		12			5	16 (0.7%)

- 월별 적조생물 분포(적조 색소로 분석) (그림 5 참고)
 - : 기수역에서 번성한 적조생물은 조석에 따라 군집 이동으로 지점별 개체수 변동 큼
 - •시기에 따라 최대 적조 번성지점 확대 이동
 - : 1월(세월교) → 4월(연안교~과정교)
 - •고수온기로 갈수록 일부 지점에서 적조 집중, 하류 쪽으로 적조 이동 관찰(6월 과정교 10.7 mg/m³)
 - 8~9월 고수온 및 강수량 증가에 따라 적조생물 색소 미관찰
 - 번성에 필요한 환경 조건(체류시간, 기온, 강수량, 일사량 등) 만족 시 언제든 적조 과량 번성 가능

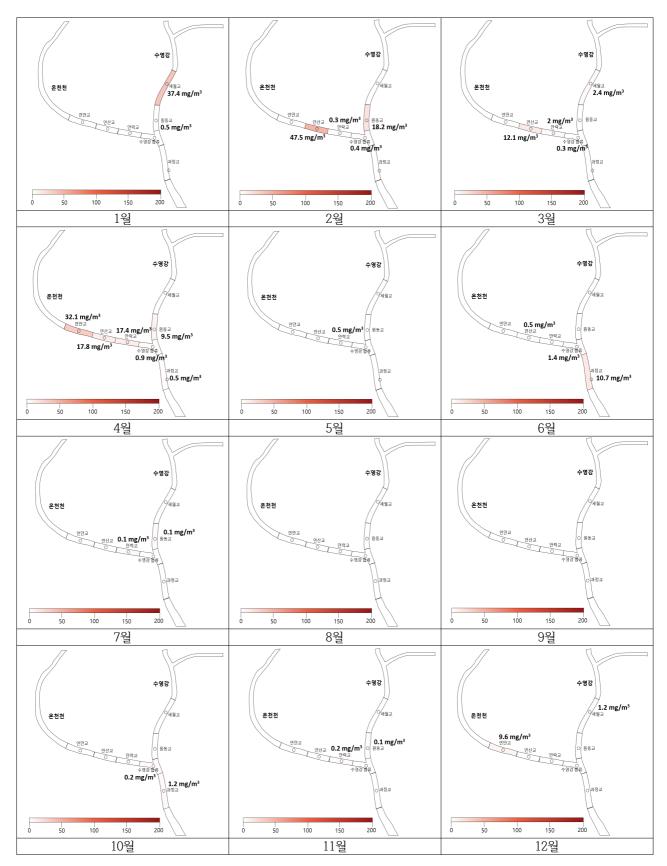


그림 5. 월별 적조생물 색소 분포현황

6 보건환경연구원보 제31권 / 2022년

- 적조생물 개체수와 수질과의 상관성
 - DO, BOD, 클로로필-a 상관성 있음
 - → 조류의 광합성 및 조류로 인한 자생 유기물질 증가
 - 조류 성장에 제한인자로 작용하지 않을 만큼 영양염류(N, P) 충분
 - 적조 발생은 수질 인자 이외에도 일사량, 강수량 감소, 체류시간의 증가 등이 복합적으로 작용하며, 하천 퇴적물에서 용출된 영양염류 영향도 고려할 수 있으므로 추후 추가적 연구 필요

표 4. 2021년 온천천·수영강 하구 적조생물과 수질인자 간 상관관계

항목 지점	수온	염분	DO		рН	BOD	COD	전기전도도	
적조생물 개체수	504	.299	.678*		.419	.826**	.535	.409	
항목 지점	TN	NO ₃ -N	NH ₄ -N	DTN	TP	PO ₄ -P	DTP	클로로필-a	

^{*} 유의확률 p<0.05, ** 유의확률 p<0.01

3. 요약 및 결론

- 조사 수계는 부영양상태로 조류 번성에 최적 상태 항상 유지
- 적조 원인생물은 갈색편모조류(Cryptomonads), 1~4월에 집중 번성(최대 13,303 cells/mL), 고수온 및 풍수기에 대폭 감소하나 수계에 항상 존재
- 적조생물 6회(1~4월, 6월, 11월) 우점, 규조류 5회(5월, 7월, 9~10월, 12월), 남조류 1회(8월) 우점('19~20년 조류 분류군별 출현 현황과 유사)
- '19~20년 대비 조사지점 증가에 따른 감소 있으나 매년 기상 현황과 기수역 시·공간별 수질 변동 크므로 지속 연구 필요
- 기수역에서 번성한 적조생물은 조석에 따른 군집 이동으로 지점별 개체수 변동 크며, 시기에 따라 최대 번성 지점 확산
- 적조생물 개체수와 수질과의 상관성은 부영양상태의 지속으로 평가 어려우며, 수질인자와 체류시간, 일사량, 강수량 등과 복합적 평가 필요
- **○** 적조 번성 따른 대응방안
 - 일반적인 적조 발생 요인 : 일사량, 정체수역, 영양염류
 - 온천천 수영강 하류 체류 구간 해소를 위해 하수처리 방류수 활용, 상류 오염원 및 비점오염 차단 및 관리
 - 적조생물 번성에 있어 오염된 하천 퇴적물에서 용출되는 영양염류에 의한 영향 고려, 비점오염 차단 및 저감 시설 준설 등 하상 혐기화를 막기 위한 유기성 퇴적물 저감 정책 필요
 - 민원 및 하천 관계기관에 자료 제공을 통해 적조 번성 시 붉은 하천을 보고 폐수 유입으로 오인하는 시민 문의 대처

4. 활용방안 및 기대효과

- O 기수역 적조현상 및 수환경 특성 파악을 위한 자료 활용
- 수계 내 적조 모니터링 자료를 통한 언론 대응, 정책 기반 마련
- 시민 및 하천 관리기관에 자료 제공을 통한 문의 대처